
Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

John Linn

Networking and Communications Architecture

Digital Equipment Corporation

550 King Street, LKG1-2/A19

Littleton, MA 01460

Linn@erlang.enet.dec.com

STATUS OF THIS MEMO

This document is an Internet Draft. Internet Drafts are working documents of the Internet Engineering

Task Force (IETF), its Areas, and its Working Groups. Note that other groups may also distribute working

documents as Internet Drafts.

Internet Drafts are draft documents valid for a maximum of six months. Internet Drafts may be updated,

replaced, or obsoleted by other documents at any time. It is not appropriate to use Internet Drafts as

reference material or to cite them other than as a "working draft" or "work in progress."

Please check the I-D abstract listing contained in each Internet Draft directory to learn the current status

of this or any other Internet Draft.

Comments on this document should be sent to "cat-ietf@mit.edu", the IETF Common Authentication

Technology WG discussion list.

1 GSS-API Characteristics and Concepts

This Generic Security Service Application Program Interface (GSS-API) definition provides security

services to callers in a generic fashion, supportable with a range of underlying mechanisms and tech-

nologies and hence allowing source-level portability of applications to different environments. This

specification defines GSS-API services and primitives at a level independent of underlying mechanism

and programming language environment, and is to be complemented by other, related specifications:

• documents defining specific parameter bindings for particular language environments

• documents defining token formats, protocols, and procedures to be implemented in order to realize

GSS-API services atop particular security mechanisms

The operational paradigm in which GSS-API operates (also summarized in Figure 1 in the graphic version

of this document) is as follows. A typical GSS-API caller is itself a communications protocol, calling

on GSS-API in order to protect its communications with authentication, integrity, and/or confidentiality

security services. A GSS-API caller accepts tokens provided to it by its local GSS-API implementation

and transfers the tokens to a peer on a remote system; that peer passes the received tokens to its

local GSS-API implementation for processing. The security services available through GSS-API in this

fashion are implementable (and have been implemented) over a range of underlying mechanisms based

on secret-key and public-key cryptographic technologies.

The GSS-API separates the operations of initializing a security context between peers, achieving peer

entity authentication1 (GSS_Init_sec_context() and GSS_Accept_sec_context() calls), from the opera-

tions of providing per-message data origin authentication and data integrity protection (GSS_Sign() and

GSS_Verify() calls) for messages subsequently transferred in conjunction with that context. Per-message

1 This security service definition, and other definitions used in this document, corresponds to that provided in International Standard ISO
7498-2-1988(E), Security Architecture.

Document Expiration: 31 May 1993 1

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

Figure 1: GSS-API Paradigm

CALLER

PROTOCOL

GSSAPI SERVICE

MECH MECH MECH

CALLER

PROTOCOL

GSSAPI SERVICE

MECH MECH MECH

INTERFACE INTERFACE

GSS_Seal() and GSS_Unseal() calls provide the data origin authentication and data integrity services

which GSS_Sign() and GSS_Verify() offer, and also support selection of confidentiality services as a

caller option. Additional calls provide supportive functions to the GSS-API’s users.

In the graphic version of this document, Figure 2 illustrates the dataflows involved in use of the GSS-

API by a client and server in a mechanism-independent fashion, establishing a security context and

transferring a protected message. The example assumes that credential acquisition has already been

completed. Only a subset of parameter and result values are illustrated, for reasons of clarity in exposition.

Further, it is assumed that the underlying authentication technology is capable of authenticating a client

to a server using elements carried within a single token, and of authenticating the server to the client

(mutual authentication) with a single returned token; this assumption holds for presently-documented CAT

mechanisms but is not necessarily true for other cryptographic technologies and associated protocols.

The client calls GSS_Init_sec_context() to establish a security context to the server identified by targ_

name, and elects to set the mutual_req_flag so that mutual authentication is performed in the course of

context establishment. GSS_Init_sec_context() returns an output_token to be passed to the server, and

indicates GSS_CONTINUE_NEEDED status pending completion of the mutual authentication sequence.

Had mutual_req_flag not been set, the initial call to GSS_Init_sec_context() would have returned GSS_

COMPLETE status. The client sends the output_token to the server.

The server passes the received token as the input_token parameter to GSS_Accept_sec_context(). GSS_

Accept_sec_context indicates GSS_COMPLETE status, provides the client’s authenticated identity in the

src_name result, and provides an output_token to be passed to the client. The server sends the output_

token to the client.

2 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

Figure 2: Example Client-Server Scenario

ClientClient GSSAPI Server Server GSSAPI

GSS_Init_sec_context()

output_token,

input_token

GSS_Accept_sec_context()

output_token, src_name,

GSS_COMPLETE

output_message,

input_message

input_message

output_message, GSS_COMPLETE

targ_name,mutual_req_flag

token

token

message

output_context_token, GSS_COMPLETE

context_token

GSS_Init_sec_context()

GSS_Seal()

GSS_Unseal()

GSS_Delete_sec_context()

GSS_COMPLETE

input_context_token

GSS_Process_context_token()

GSS_COMPLETE

GSS_CONTINUE_NEEDED

GSS_COMPLETE

The client passes the received token as the input_token parameter to a successor call to GSS_Init_sec_

context(), which processes data included in the token in order to achieve mutual authentication from

the client’s viewpoint. This call to GSS_Init_sec_context() returns GSS_COMPLETE status, indicating

successful mutual authentication and the completion of context establishment for this example.

The client generates a data message and passes it to GSS_Seal(). GSS_Seal() performs data origin

authentication, data integrity, and (optionally) confidentiality processing on the message and encapsulates

the result into output_message, indicating GSS_COMPLETE status. The client sends the output_message

to the server.

The server passes the received message to GSS_Unseal(). GSS_Unseal inverts the encapsulation per-

formed by GSS_Seal(), deciphers the message if the optional confidentiality feature was applied, and

validates the data origin authentication and data integrity checking quantities. GSS_Unseal() indicates

successful validation by returning GSS_COMPLETE status along with the resultant output_message.

Document Expiration: 31 May 1993 3

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

For purposes of this example, we assume that the server knows by out-of-band means that this context will

have no further use after one protected message is transferred from client to server. Given this premise,

the server now calls GSS_Delete_sec_context() to flush context-level information. GSS_Delete_sec_

context returns a context_token for the server to pass to the client.

The client passes the returned context_token to GSS_Process_context_token(), which returns GSS_

COMPLETE status after deleting context-level information at the client system.

The GSS-API design assumes and addresses several basic goals, including:

• Mechanism independence: The GSS-API defines an interface to cryptographically implemented

strong authentication and other security services at a generic level which is independent of particular

underlying mechanisms. For example, GSS-API-provided services can be implemented by secret-key

technologies (e.g., Kerberos) or public-key approaches (e.g., X.509).

• Protocol environment independence: The GSS-API is independent of the communications protocol

suites with which it is employed, permitting use in a broad range of protocol environments. In

appropriate environments, an intermediate implementation "veneer" which is oriented to a particular

communication protocol (e.g., Remote Procedure Call (RPC)) may be interposed between applica-

tions which call that protocol and the GSS-API, thereby invoking GSS-API facilities in conjunction

with that protocol’s communications invocations.

• Protocol association independence: The GSS-API’s security context construct is independent of

communications protocol association constructs. This characteristic allows a single GSS-API im-

plementation to be utilized by a variety of invoking protocol modules on behalf of those modules’

calling applications. GSS-API services can also be invoked directly by applications, wholly inde-

pendent of protocol associations.

• Suitability to a range of implementation placements: GSS-API clients are not constrained to reside

within any Trusted Computing Base (TCB) perimeter defined on a system where the GSS-API is

implemented; security services are specified in a manner suitable to both intra-TCB and extra-TCB

callers.

1.1 GSS-API Constructs

This section describes the basic elements comprising the GSS-API.

1.1.1 Credentials

Credentials structures provide the prerequisites enabling peers to establish security contexts with each

other. A caller may designate that its default credential be used for context establishment calls without

presenting an explicit handle to that credential. Alternately, those GSS-API callers which need to make

explicit selection of particular credentials structures may make references to those credentials through

GSS-API-provided credential handles ("cred_handles").

A single credential structure may be used for initiation of outbound contexts and acceptance of inbound

contexts. Callers needing to operate in only one of these modes may designate this fact when credentials

are acquired for use, allowing underlying mechanisms to optimize their processing and storage require-

ments. The credential elements defined by a particular mechanism may contain multiple cryptographic

keys, e.g., to enable authentication and message encryption to be performed with different algorithms.

A single credential structure may accommodate credential information associated with multiple underlying

mechanisms (mech_types); a credential structure’s contents will vary depending on the set of mech_types

supported by a particular GSS-API implementation. Commonly, a single mech_type will be used for all

security contexts established by a particular initiator to a particular target; the primary motivation for

4 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

supporting credential sets representing multiple mech_types is to allow initiators on systems which are

equipped to handle multiple types to initiate contexts to targets on other systems which can accommodate

only a subset of the set supported at the initiator’s system.

It is the responsibility of underlying system-specific mechanisms and OS functions below the GSS-API

to ensure that the ability to acquire and use credentials associated with a given identity is constrained to

appropriate processes within a system. This responsibility should be taken seriously by implementors, as

the ability for an entity to utilize a principal’s credentials is equivalent to the entity’s ability to successfully

assert that principal’s identity.

Once a set of GSS-API credentials is established, the transferability of that credentials set to other

processes or analogous constructs within a system is a local matter, not defined by the GSS-API. An

example local policy would be one in which any credentials received as a result of login to a given user

account, or of delegation of rights to that account, are accessible by, or transferable to, processes running

under that account.

The credential establishment process (particularly when performed on behalf of users rather than server

processes) is likely to require access to passwords or other quantities which should be protected locally

and exposed for the shortest time possible. As a result, it will often be appropriate for preliminary

credential establishment to be performed through local means at user login time, with the result(s)

cached for subsequent reference. These preliminary credentials would be set aside (in a system-specific

fashion) for subsequent use, either:

• to be accessed by an invocation of the GSS-API GSS_Acquire_cred() call, returning an explicit

handle to reference that credential

• as the default credentials installed on behalf of a process

1.1.2 Tokens

Tokens are data elements transferred between GSS-API callers, and are divided into two classes. Context-

level tokens are exchanged in order to establish and manage a security context between peers. Per-

message tokens are exchanged in conjunction with an established context to provide protective security

services for corresponding data messages. The internal contents of both classes of tokens are specific to

the particular underlying mechanism used to support the GSS-API; Appendix B of this document provides

a uniform recommendation for designers of GSS-API support mechanisms, encapsulating mechanism-

specific information along with a globally-interpretable mechanism identifier.

Tokens are opaque from the viewpoint of GSS-API callers. They are generated within the GSS-API

implementation at an end system, provided to a GSS-API caller to be transferred to the peer GSS-API

caller at a remote end system, and processed by the GSS-API implementation at that remote end system.

Tokens may be output by GSS-API primitives (and are to be transferred to GSS-API peers) independent

of the status indications which those primitives indicate. Token transfer may take place in an in-band

manner, integrated into the same protocol stream used by the GSS-API callers for other data transfers,

or in an out-of-band manner across a logically separate channel.

Development of GSS-API support primitives based on a particular underlying cryptographic technique

and protocol does not necessarily imply that GSS-API callers invoking that GSS-API mechanism type

will be able to interoperate with peers invoking the same technique and protocol outside the GSS-

API paradigm. For example, the format of GSS-API tokens defined in conjunction with a particular

mechanism, and the techniques used to integrate those tokens into callers’ protocols, may not be the

same as those used by non-GSS-API callers of the same underlying technique.

Document Expiration: 31 May 1993 5

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

1.1.3 Security Contexts

Security contexts are established between peers, using credentials established locally in conjunction with

each peer or received by peers via delegation. Multiple contexts may exist simultaneously between a pair

of peers, using the same or different sets of credentials. Coexistence of multiple contexts using different

credentials allows graceful rollover when credentials expire. Distinction among multiple contexts based

on the same credentials serves applications by distinguishing different message streams in a security

sense.

The GSS-API is independent of underlying protocols and addressing structure, and depends on its callers

to transport GSS-API-provided data elements. As a result of these factors, it is a caller responsibility to

parse communicated messages, separating GSS-API-related data elements from caller-provided data. The

GSS-API is independent of connection vs. connectionless orientation of the underlying communications

service.

No correlation between security context and communications protocol association is dictated2. This

separation allows the GSS-API to be used in a wide range of communications environments, and also

simplifies the calling sequences of the individual calls. In many cases (depending on underlying security

protocol, associated mechanism, and availability of cached information), the state information required

for context setup can be sent concurrently with initial signed user data, without interposing additional

message exchanges.

1.1.4 Mechanism Types

In order to successfully establish a security context with a target peer, it is necessary to identify an

appropriate underlying mechanism type (mech_type) which both initiator and target peers support. The

definition of a mechanism embodies not only the use of a particular cryptographic technology (or a hybrid

or choice among alternative cryptographic technologies), but also definition of the syntax and semantics

of data element exchanges which that mechanism will employ in order to support security services.

It is recommended that callers initiating contexts specify the "default" mech_type value, allowing system-

specific functions within or invoked by the GSS-API implementation to select the appropriate mech_type,

but callers may direct that a particular mech_type be employed when necessary.

The means for identifying a shared mech_type to establish a security context with a peer will vary in

different environments and circumstances; examples include (but are not limited to):

• use of a fixed mech_type, defined by configuration, within an environment

• syntactic convention on a target-specific basis, through examination of a target’s name

• lookup of a target’s name in a naming service or other database in order to identify mech_types

supported by that target

• explicit negotiation between GSS-API callers in advance of security context setup

When transferred between GSS-API peers, mech_type specifiers (per Appendix B, represented as Object

Identifiers 3(OIDs)) serve to qualify the interpretation of associated tokens. Use of hierarchically struc-

tured OIDs serves to preclude ambiguous interpretation of mech_type specifiers. The OID representing

the DASS MechType, for example, is 1.3.12.2.1011.7.5.

2 The optional channel binding facility, discussed in Section 1.1.6 of this document, represents an intentional exception to this rule, supporting
additional protection features within GSS-API supporting mechanisms.

3 The structure and encoding of Object Identifiers is defined in ISO/IEC 8824, "Specification of Abstract Syntax Notation One (ASN.1)" and
in ISO/IEC 8825, "Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)".

6 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

1.1.5 Naming

The GSS-API avoids prescription of naming structures, treating the names transferred across the interface

in order to initiate and accept security contexts as opaque octet string quantities. This approach supports

the GSS-API’s goal of implementability atop a range of underlying security mechanisms, recognizing the

fact that different mechanisms process and authenticate names which are presented in different forms.

Generalized services offering translation functions among arbitrary sets of naming environments are

outside the scope of the GSS-API; availability and use of local conversion functions to translate among

the naming formats supported within a given end system is anticipated.

Two distinct classes of name representations are used in conjunction with different GSS-API parameters:

• a printable form (denoted by OCTET STRING), for acceptance from and presentation to users; print-

able name forms are accompanied by OID tags identifying the namespace to which they correspond

• an internal form (denoted by INTERNAL NAME), opaque to callers and defined by individual

GSS-API implementations; GSS-API implementations supporting multiple namespace types are re-

sponsible for maintaining internal tags to disambiguate the interpretation of particular names

Tagging of printable names allows GSS-API callers and underlying GSS-API mechanisms to disambiguate

name types and to determine whether an associated name’s type is one which they are capable of

processing, avoiding aliasing problems which could result from misinterpreting a name of one type as a

name of another type.

In addition to providing means for names to be tagged with types, this specification defines primitives

to support a level of naming environment independence for certain calling applications. To provide

basic services4 oriented towards the requirements of callers which need not themselves interpret the

internal syntax and semantics of names, GSS-API calls for name comparison (GSS_Compare_name()),

human-readable display (GSS_Display_name()), input conversion (GSS_Import_name()), and internal

name deallocation (GSS_Release_name()) functions are defined.

GSS_Import_name() implementations can, where appropriate, support more than one printable syntax

corresponding to a given namespace (e.g., alternative printable representations for X.500 Distinguished

Names), allowing flexibility for their callers to select among alternative representations. GSS_Display_

name() implementations output a printable syntax selected as appropriate to their operational environ-

ments; this selection is a local matter. Callers desiring portability across alternative printable syntaxes

should refrain from implementing comparisons based on printable name forms and should instead use

the GSS_Compare_name() call to determine whether or not one internal-format name matches another.

1.1.6 Channel Bindings

The GSS-API accommodates the concept of caller-provided channel binding ("chan_binding") informa-

tion, used by GSS-API callers to bind the establishment of a security context to relevant characteristics

(e.g., addresses, transformed representations of encryption keys) of the underlying communications chan-

nel and of protection mechanisms applied to that communications channel. Verification by one peer of

chan_binding information provided by the other peer to a context serves to protect against various active

attacks. The caller initiating a security context must determine the chan_binding values before making

the GSS_Init_sec_context() call, and consistent values must be provided by both peers to a context.

Callers should not assume that underlying mechanisms provide confidentiality protection for channel

binding information.

4 It is anticipated that these proposed GSS-API calls will be implemented in many end systems based on system-specific name manipulation
primitives already extant within those end systems; inclusion within the GSS-API is intended to offer GSS-API callers a portable means to
perform specific operations, supportive of authorization and audit requirements, on authenticated names.

Document Expiration: 31 May 1993 7

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

Use or non-use of the GSS-API channel binding facility is a caller option, and GSS-API supporting

mechanisms can support operation in an environment where NULL channel bindings are presented.

When non-NULL channel bindings are used, certain mechanisms will offer enhanced security value by

interpreting the bindings’ content (rather than simply representing those bindings, or signatures computed

on them, within tokens) and will therefore depend on presentation of specific data in a defined format.

To this end, agreements among mechanism implementors are defining5 conventional interpretations for

the contents of channel binding arguments, including address specifiers (with content dependent on

communications protocol environment) for context initiators and acceptors. In order for GSS-API callers

to be portable across multiple mechanisms and achieve the full security functionality available from each

mechanism, it is strongly recommended that GSS-API callers provide channel bindings consistent with

these conventions and those of the networking environment in which they operate.

1.2 GSS-API Features and Issues

This section describes aspects of GSS-API operations, of the security services which the GSS-API

provides, and provides commentary on design issues.

1.2.1 Status Reporting

Each GSS-API call provides two status return values. Major_status values provide a mechanism-

independent indication of call status (e.g., GSS_COMPLETE, GSS_FAILURE, GSS_CONTINUE_

NEEDED), sufficient to drive normal control flow within the caller in a generic fashion. Table 1

summarizes the defined major_status return codes in tabular fashion.

Table 1: GSS-API Major Status Codes

FATAL ERROR CODES

GSS_BAD_BINDINGS channel binding mismatch

GSS_BAD_MECH unsupported mechanism requested

GSS_BAD_NAME invalid name provided

GSS_BAD_NAMETYPE name of unsupported type provided

GSS_BAD_STATUS invalid input status selector

GSS_BAD_SIG token had invalid signature

GSS_CONTEXT_EXPIRED specified security context expired

GSS_CREDENTIALS_EXPIRED expired credentials detected

GSS_DEFECTIVE_CREDENTIAL defective credential detected

GSS_DEFECTIVE_TOKEN defective token detected

GSS_FAILURE failure, unspecified at GSS-API level

GSS_NO_CONTEXT no valid security context specified

GSS_NO_CRED no valid credentials provided

5 These conventions are being incorporated into related documents.

8 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

Table 1 (Cont.): GSS-API Major Status Codes

INFORMATORY STATUS CODES

GSS_COMPLETE normal completion

GSS_CONTINUE_NEEDED continuation call to routine required

GSS_DUPLICATE_TOKEN duplicate per-message token detected

GSS_OLD_TOKEN timed-out per-message token detected

GSS_UNSEQ_TOKEN out-of-order per-message token detected

Minor_status provides more detailed status information which may include status codes specific to the

underlying security mechanism. Minor_status values are not specified in this document.

GSS_CONTINUE_NEEDED major_status returns, and optional message outputs, are provided in GSS_

Init_sec_context() and GSS_Accept_sec_context() calls so that different mechanisms’ employment of

different numbers of messages within their authentication sequences need not be reflected in separate

code paths within calling applications. Instead, such cases are accomodated with sequences of continu-

ation calls to GSS_Init_sec_context() and GSS_Accept_sec_context(). The same mechanism is used to

encapsulate mutual authentication within the GSS-API’s context initiation calls. In the graphic version

of this document, Figure 3 illustrates a GSS-API continuation scenario.

Figure 3: Example Context Establishment with Continuation

GSS_Acquire_cred() GSS_Acquire_cred()

GSS_Init_sec_context()

GSS_Init_sec_context()

GSS_Accept_sec_context()

GSS_Accept_sec_context()

credentials credentials

token

token

token
GSS_CONTINUE_NEEDED,

context handle

GSS_CONTINUE_NEEDED,

context handle

target name

GSS_COMPLETE GSS_COMPLETE,
source name

Established context Established context

Document Expiration: 31 May 1993 9

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

For mech_types which require interactions with third-party servers in order to establish a security context,

GSS-API context establishment calls may block pending completion of such third-party interactions. On

the other hand, no GSS-API calls pend on serialized interactions with GSS-API peer entities. As a result,

local GSS-API status returns cannot reflect unpredictable or asynchronous exceptions occurring at remote

peers, and reflection of such status information is a caller responsibility outside the GSS-API.

1.2.2 Per-Message Security Service Availability

When a context is established, two flags are returned to indicate the set of per-message protection security

services which will be available on the context:

• the integ_avail flag indicates whether per-message integrity and data origin authentication services

are available

• the conf_avail flag indicates whether per-message confidentiality services are available, and will

never be returned TRUE unless the integ_avail flag is also returned TRUE

GSS-API callers desiring per-message security services should check the values of these flags at context

establishment time, and must be aware that a returned FALSE value for integ_avail means that invocation

of GSS_Sign() or GSS_Seal() primitives on the associated context will apply no cryptographic protection

to user data messages.

The GSS-API per-message protection service primitives, as the category name implies, are oriented to

operation at the granulatity of protocol data units. They perform cryptographic operations on the data

units, transfer cryptographic control information in tokens, and, in the case of GSS_Seal(), encapsulate

the protected data unit. As such, these primitives are not oriented to efficient data protection for stream-

paradigm protocols (e.g., Telnet) if cryptography must be applied on an octet-by-octet basis.

1.2.3 Per-Message Replay Detection and Sequencing

Certain underlying mech_types are expected to offer support for replay detection and/or sequencing of

messages transferred on the contexts they support. These optionally-selectable protection features are

distinct from replay detection and sequencing features applied to the context establishment operation

itself; the presence or absence of context-level replay or sequencing features is wholly a function of the

underlying mech_type’s capabilities, and is not selected or omitted as a caller option.

The caller initiating a context provides flags (replay_det_req_flag and sequence_req_flag) to specify

whether the use of per-message replay detection and sequencing features is desired on the context being

established. The GSS-API implementation at the initiator system can determine whether these features

are supported (and whether they are optionally selectable) as a function of mech_type, without need for

bilateral negotiation with the target. When enabled, these features provide recipients with indicators as a

result of GSS-API processing of incoming messages, identifying whether those messages were detected

as duplicates or out-of-sequence. Detection of such events does not prevent a suspect message from

being provided to a recipient; the appropriate course of action on a suspect message is a matter of caller

policy.

The semantics of the replay detection and sequencing services applied to received messages, as visible

across the interface which the GSS-API provides to its clients, are as follows:

When replay_det_state is TRUE, the possible major_status returns for well-formed and correctly signed

messages are as follows:

1. GSS_COMPLETE indicates that the message was within the window (of time or sequence space)

allowing replay events to be detected, and that the message was not a replay of a previously-processed

message within that window.

10 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

2. GSS_DUPLICATE_TOKEN indicates that the signature on the received message was correct, but

that the message was recognized as a duplicate of a previously-processed message.

3. GSS_OLD_TOKEN indicates that the signature on the received message was correct, but that the

message is too old to be checked for duplication.

When sequence_state is TRUE, the possible major_status returns for well-formed and correctly signed

messages are as follows:

1. GSS_COMPLETE indicates that the message was within the window (of time or sequence space)

allowing replay events to be detected, and that the message was not a replay of a previously-processed

message within that window.

2. GSS_DUPLICATE_TOKEN indicates that the signature on the received message was correct, but

that the message was recognized as a duplicate of a previously-processed message.

3. GSS_OLD_TOKEN indicates that the signature on the received message was correct, but that the

token is too old to be checked for duplication.

4. GSS_UNSEQ_TOKEN indicates that the signature on the received message was correct, but that it

is earlier in a sequenced stream 6 than a message already processed on the context.

As the message stream integrity features (especially sequencing) may interfere with certain applications’

intended communications paradigms, and since support for such features is likely to be resource intensive,

it is highly recommended that mech_types supporting these features allow them to be activated selectively

on initiator request when a context is established. A context initiator and target are provided with

corresponding indicators (replay_det_state and sequence_state), signifying whether these features are

active on a given context.

An example mech_type supporting per-message replay detection could (when replay_det_state is TRUE)

implement the feature as follows: The underlying mechanism would insert timestamps in data elements

output by GSS_Sign() and GSS_Seal(), and would maintain (within a time-limited window) a cache

(qualified by originator-recipient pair) identifying received data elements processed by GSS_Verify()

and GSS_Unseal(). When this feature is active, exception status returns (GSS_DUPLICATE_TOKEN,

GSS_OLD_TOKEN) will be provided when GSS_Verify() or GSS_Unseal() is presented with a message

which is either a detected duplicate of a prior message or which is too old to validate against a cache of

recently received messages.

1.2.4 Quality of Protection

Some mech_types will provide their users with fine granularity control over the means used to provide

per-message protection, allowing callers to trade off security processing overhead dynamically against

the protection requirements of particular messages. A per-message quality-of-protection parameter (anal-

ogous to quality-of-service, or QOS) selects among different QOP options supported by that mechanism.

On context establishment for a multi-QOP mech_type, context-level data provides the prerequisite data

for a range of protection qualities.

6 Mechanisms can be architected to provide a stricter form of sequencing service, delivering particular messages to recipients only after all
predecessor messages in an ordered stream have been delivered. This type of support is incompatible with the GSS-API paradigm in which
recipients receive all messages, whether in order or not, and provide them (one at a time, without intra-GSS-API message buffering) to
GSS-API routines for validation. GSS-API facilities provide supportive functions, aiding clients to achieve strict message stream integrity
in an efficient manner in conjunction with sequencing provisions in communications protocols, but the GSS-API does not offer this level of
message stream integrity service by itself.

Document Expiration: 31 May 1993 11

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

It is expected that the majority of callers will not wish to exert explicit mechanism-specific QOP control

and will therefore request selection of a default QOP. Definitions of, and choices among, non-default

QOP values are mechanism-specific, and no ordered sequences of QOP values can be assumed equivalent

across different mechanisms. Meaningful use of non-default QOP values demands that callers be familiar

with the QOP definitions of an underlying mechanism or mechanisms, and is therefore a non-portable

construct.

2 Interface Descriptions

This section describes the GSS-API’s service interface, dividing the set of calls offered into four groups.

Credential management calls are related to the acquisition and release of credentials by principals.

Context-level calls are related to the management of security contexts between principals. Per-message

calls are related to the protection of individual messages on established security contexts. Support calls

provide ancillary functions useful to GSS-API callers. Table 2 groups and summarizes the calls in tabular

fashion.

Table 2: GSS-API Calls

CREDENTIAL MANAGEMENT

GSS_Acquire_cred acquire credentials for use

GSS_Release_cred release credentials after use

GSS_Inquire_cred display information about credentials

CONTEXT-LEVEL CALLS

GSS_Init_sec_context initiate outbound security context

GSS_Accept_sec_context accept inbound security context

GSS_Delete_sec_context flush context when no longer needed

GSS_Process_context_token process received control token on context

GSS_Context_time indicate validity time remaining on context

PER-MESSAGE CALLS

GSS_Sign apply signature, receive as token separate from message

GSS_Verify validate signature token along with message

GSS_Seal sign, optionally encrypt, encapsulate

GSS_Unseal decapsulate, decrypt if needed, validate signature

SUPPORT CALLS

GSS_Display_status translate status codes to printable form

GSS_Indicate_mechs indicate mech_types supported on local system

GSS_Compare_name compare two names for equality

GSS_Display_name translate name to printable form

GSS_Import_name convert printable name to normalized form

GSS_Release_name free storage of normalized-form name

GSS_Release_buffer free storage of printable name

GSS_Release_oid_set free storage of OID set object

12 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

2.1 Credential management calls

These GSS-API calls provide functions related to the management of credentials. Their characterization

with regard to whether or not they may block pending exchanges with other network entities (e.g.,

directories or authentication servers) depends in part on OS-specific (extra-GSS-API) issues, so is not

specified in this document.

The GSS_Acquire_cred() call is defined within the GSS-API in support of application portability, with

a particular orientation towards support of portable server applications. It is recognized that (for certain

systems and mechanisms) credentials for interactive users may be managed differently from credentials for

server processes; in such environments, it is the GSS-API implementation’s responsibility to distinguish

these cases and the procedures for making this distinction are a local matter. The GSS_Release_cred()

call provides a means for callers to indicate to the GSS-API that use of a credentials structure is no

longer required. The GSS_Inquire_cred() call allows callers to determine information about a credentials

structure.

2.1.1 GSS_Acquire_cred call

Inputs:

• desired_name INTERNAL NAME, —NULL requests locally-determined default

• lifetime_req INTEGER,—in seconds; 0 requests default

• desired_mechs SET OF OBJECT IDENTIFIER,—empty set requests system-selected default

• cred_usage INTEGER—0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY, 2=ACCEPT-ONLY

Outputs:

• major_status INTEGER,

• minor_status INTEGER,

• output_cred_handle OCTET STRING,

• actual_mechs SET OF OBJECT IDENTIFIER,

• lifetime_rec INTEGER —in seconds, or reserved value for INDEFINITE

Return major_status codes:

• GSS_COMPLETE indicates that requested credentials were successfully established, for the duration

indicated in lifetime_rec, suitable for the usage requested in cred_usage, for the set of mech_types

indicated in actual_mechs, and that those credentials can be referenced for subsequent use with the

handle returned in output_cred_handle.

• GSS_BAD_MECH indicates that a mech_type unsupported by the GSS-API implementation type

was requested, causing the credential establishment operation to fail.

• GSS_BAD_NAMETYPE indicates that the provided desired_name is uninterpretable or of a type

unsupported by the supporting GSS-API implementation, so no credentials could be established for

the accompanying desired_name.

• GSS_BAD_NAME indicates that the provided desired_name is inconsistent in terms of internally-

incorporated type specifier information, so no credentials could be established for the accompanying

desired_name.

Document Expiration: 31 May 1993 13

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

• GSS_FAILURE indicates that credential establishment failed for reasons unspecified at the GSS-API

level, including lack of authorization to establish and use credentials associated with the identity

named in the input desired_name argument.

GSS_Acquire_cred() is used to acquire credentials so that a principal can (as a function of the input cred_

usage parameter) initiate and/or accept security contexts under the identity represented by the desired_

name input argument. On successful completion, the returned output_cred_handle result provides a

handle for subsequent references to the acquired credentials. Typically, single-user client processes using

only default credentials for context establishment purposes will have no need to invoke this call.

A caller may provide the value NULL for desired_name, signifying a request for credentials corresponding

to a default principal identity. The procedures used by GSS-API implementations to select the appropriate

principal identity in response to this form of request are local matters. It is possible that multiple pre-

established credentials may exist for the same principal identity (for example, as a result of multiple user

login sessions) when GSS_Acquire_cred() is called; the means used in such cases to select a specific

credential are local matters7.

The lifetime_rec result indicates the length of time for which the acquired credentials will be valid, as

an offset from the present. A mechanism may return a reserved value indicating INDEFINITE if no

constraints on credential lifetime are imposed. A caller of GSS_Acquire_cred() can request a length of

time for which acquired credentials are to be valid (lifetime_req argument), beginning at the present8, or

can request credentials with a default validity interval. Certain mechanisms and implementations may

bind in credential validity period specifiers at a point preliminary to invocation of the GSS_Acquire_

cred() call (e.g., in conjunction with user login procedures). As a result, callers requesting non-default

values for lifetime_req must recognize that such requests cannot always be honored and must be prepared

to accommodate the use of returned credentials with different lifetimes as indicated in lifetime_rec.

The caller of GSS_Acquire_cred() can explicitly specify a set of mech_types which are to be accommo-

dated in the returned credentials (desired_mechs argument), or can request credentials for a system-defined

default set of mech_types. Selection of the system-specified default set is recommended in the interests

of application portability. The actual_mechs return value may be interrogated by the caller to determine

the set of mechanisms with which the returned credentials may be used.

2.1.2 GSS_Release_cred call

Input:

• cred_handle OCTET STRING—NULL specifies default credentials

Outputs:

• major_status INTEGER,

• minor_status INTEGER

Return major_status codes:

• GSS_COMPLETE indicates that the credentials referenced by the input cred_handle were released

for purposes of subsequent access by the caller. The effect on other processes which may be

authorized shared access to such credentials is a local matter.

7 The input lifetime_req argument to GSS_Acquire_cred() may provide useful information for local GSS-API implementations to employ in
making this disambiguation in a manner which will best satisfy a caller’s intent.

8 Requests for postdated credentials are not supported within the GSS-API.

14 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

• GSS_NO_CRED indicates that no release operation was performed, either because the input cred_

handle was invalid or because the caller lacks authorization to access the referenced credentials.

• GSS_FAILURE indicates that the release operation failed for reasons unspecified at the GSS-API

level.

Provides a means for a caller to explicitly request that credentials be released when their use is no

longer required. Note that system-specific credential management functions are also likely to exist,

for example to assure that credentials shared among processes are properly deleted when all affected

processes terminate, even if no explicit release requests are issued by those processes. Given the fact

that multiple callers are not precluded from gaining authorized access to the same credentials, invocation

of GSS_Release_cred() cannot be assumed to delete a particular set of credentials on a system-wide

basis.

2.1.3 GSS_Inquire_cred call

Input:

• cred_handle OCTET STRING—NULL specifies default credentials

Outputs:

• major_status INTEGER,

• minor_status INTEGER,

• cred_name INTERNAL NAME,

• lifetime_rec INTEGER—in seconds, or reserved value for INDEFINITE

• cred_usage INTEGER,—0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY, 2=ACCEPT-ONLY

• mech_set SET OF OBJECT IDENTIFIER

Return major_status codes:

• GSS_COMPLETE indicates that the credentials referenced by the input cred_handle argument were

valid, and that the output cred_name, lifetime_rec, and cred_usage values represent, respectively,

the credentials’ associated principal name, remaining lifetime, suitable usage modes, and supported

mechanism types.

• GSS_NO_CRED indicates that no information could be returned about the referenced credentials,

either because the input cred_handle was invalid or because the caller lacks authorization to access

the referenced credentials.

• GSS_FAILURE indicates that the release operation failed for reasons unspecified at the GSS-API

level.

The GSS_Inquire_cred() call is defined primarily for the use of those callers which make use of default

credentials rather than acquiring credentials explicitly with GSS_Acquire_cred(). It enables callers to

determine a credential structure’s associated principal name, remaining validity period, usability for

security context initiation and/or acceptance, and supported mechanisms.

Document Expiration: 31 May 1993 15

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

2.2 Context-level calls

This group of calls is devoted to the establishment and management of security contexts between peers.

A context’s initiator calls GSS_Init_sec_context(), resulting in generation of a token which the caller

passes to the target. At the target, that token is passed to GSS_Accept_sec_context(). Depending on the

underlying mech_type and specified options, additional token exchanges may be performed in the course

of context establishment; such exchanges are accommodated by GSS_CONTINUE_NEEDED status

returns from GSS_Init_sec_context() and GSS_Accept_sec_context(). Either party to an established

context may invoke GSS_Delete_sec_context() to flush context information when a context is no longer

required. GSS_Process_context_token() is used to process received tokens carrying context-level control

information. GSS_Context_time() allows a caller to determine the length of time for which an established

context will remain valid.

2.2.1 GSS_Init_sec_context call

Inputs:

• claimant_cred_handle OCTET STRING, —NULL specifies "use default"

• input_context_handle INTEGER, —0 specifies "none assigned yet"

• targ_name INTERNAL NAME,

• mech_type OBJECT IDENTIFIER, —NULL parameter specifies "use default"

• deleg_req_flag BOOLEAN,

• mutual_req_flag BOOLEAN,

• replay_det_req_flag BOOLEAN,

• sequence_req_flag BOOLEAN,

• lifetime_req INTEGER,—0 specifies default lifetime

• chan_bindings OCTET STRING,

• input_token OCTET STRING—NULL or token received from target

Outputs:

• major_status INTEGER,

• minor_status INTEGER,

• output_context_handle INTEGER,

• mech_type OBJECT IDENTIFIER, —actual mechanism always indicated, never NULL

• output_token OCTET STRING, —NULL or token to pass to context target

• deleg_state BOOLEAN,

• mutual_state BOOLEAN,

• replay_det_state BOOLEAN,

• sequence_state BOOLEAN,

• conf_avail BOOLEAN,

• integ_avail BOOLEAN,

• lifetime_rec INTEGER — in seconds, or reserved value for INDEFINITE

16 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

This call may block pending network interactions for those mech_types in which an authentication server

or other network entity must be consulted on behalf of a context initiator in order to generate an output_

token suitable for presentation to a specified target.

Return major_status codes:

• GSS_COMPLETE indicates that context-level information was successfully initialized, and that

the returned output_token will provide sufficient information for the target to perform per-message

processing on the newly-established context.

• GSS_CONTINUE_NEEDED indicates that control information in the returned output_token must

be sent to the target, and that a reply must be received and passed as the input_token argument to

a continuation call to GSS_Init_sec_context(), before per-message processing can be performed in

conjunction with this context.

• GSS_DEFECTIVE_TOKEN indicates that consistency checks performed on the input_token failed,

preventing further processing from being performed based on that token.

• GSS_DEFECTIVE_CREDENTIAL indicates that consistency checks performed on the credential

structure referenced by claimant_cred_handle failed, preventing further processing from being per-

formed using that credential structure.

• GSS_BAD_SIG indicates that the received input_token contains an incorrect signature, so context

setup cannot be accomplished.

• GSS_NO_CRED indicates that no context was established, either because the input cred_handle was

invalid, because the referenced credentials are valid for context acceptor use only, or because the

caller lacks authorization to access the referenced credentials.

• GSS_CREDENTIALS_EXPIRED indicates that the credentials provided through the input claimant_

cred_handle argument are no longer valid, so context establishment cannot be completed.

• GSS_BAD_BINDINGS indicates that a mismatch between the caller-provided chan_bindings and

those extracted from the input_token was detected, signifying a security-relevant event and prevent-

ing context establishment. (This result will be returned by GSS_Init_sec_context only for contexts

where mutual_state is TRUE.)

• GSS_NO_CONTEXT indicates that no valid context was recognized for the input context_handle

provided; this major status will be returned only for successor calls following GSS_CONTINUE_

NEEDED status returns.

• GSS_BAD_NAMETYPE indicates that the provided targ_name is of a type uninterpretable or unsup-

ported by the supporting GSS-API implementation, so context establishment cannot be completed.

• GSS_BAD_NAME indicates that the provided targ_name is inconsistent in terms of internally-

incorporated type specifier information, so context establishment cannot be accomplished.

• GSS_FAILURE indicates that context setup could not be accomplished for reasons unspecified at

the GSS-API level, and that no interface-defined recovery action is available.

This routine is used by a context initiator, and ordinarily emits one (or, for the case of a multi-step

exchange, more than one) output_token suitable for use by the target within the selected mech_type’s

protocol. Using information in the credentials structure referenced by claimant_cred_handle, GSS_Init_

sec_context() initializes the data structures required to establish a security context with target targ_

name. The claimant_cred_handle must correspond to the same valid credentials structure on the initial

call to GSS_Init_sec_context() and on any successor calls resulting from GSS_CONTINUE_NEEDED

status returns; different protocol sequences modeled by the GSS_CONTINUE_NEEDED mechanism will

require access to credentials at different points in the context establishment sequence.

Document Expiration: 31 May 1993 17

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

The input_context_handle argument is 0, specifying "not yet assigned", on the first GSS_Init_sec_

context() call relating to a given context. That call returns an output_context_handle for future ref-

erences to this context. When continuation attempts to GSS_Init_sec_context() are needed to perform

context establishment, the previously-returned non-zero handle value is entered into the input_context_

handle argument and will be echoed in the returned output_context_handle argument. On such contin-

uation attempts (and only on continuation attempts) the input_token value is used, to provide the token

returned from the context’s target.

The chan_bindings argument is used by the caller to provide information binding the security context

to security-related characteristics (e.g., addresses, cryptographic keys) of the underlying communications

channel. See Section 1.1.6 of this document for more discussion of this argument’s usage.

The input_token argument contains a message received from the target, and is significant only on a

call to GSS_Init_sec_context() which follows a previous return indicating GSS_CONTINUE_NEEDED

major_status.

It is the caller’s responsibility to establish a communications path to the target, and to transmit any

returned output_token (independent of the accompanying returned major_status value) to the target over

that path. The output_token can, however, be transmitted along with the first application-provided input

message to be processed by GSS_Sign() or GSS_Seal() in conjunction with a successfully-established

context.

The initiator may request various context-level functions through input flags: the deleg_req_flag requests

delegation of access rights, the mutual_req_flag requests mutual authentication, the replay_det_req_flag

requests that replay detection features be applied to messages transferred on the established context, and

the sequence_req_flag requests that sequencing be enforced. (See Section 1.2.3 for more information on

replay detection and sequencing features.)

Not all of the optionally-requestable features will be available in all underlying mech_types; the cor-

responding return state values (deleg_state, mutual_state, replay_det_state, sequence_state) indicate, as

a function of mech_type processing capabilities and initiator-provided input flags, the set of features

which will be active on the context. These state indicators’ values are undefined unless the routine’s

major_status indicates COMPLETE. Failure to provide the precise set of features requested by the caller

does not cause context establishment to fail; it is the caller’s prerogative to delete the context if the fea-

ture set provided is unsuitable for the caller’s use. The returned mech_type value indicates the specific

mechanism employed on the context, and will never indicate the value for "default".

The conf_avail return value indicates whether the context supports per-message confidentiality services,

and so informs the caller whether or not a request for encryption through the conf_req_flag input to GSS_

Seal() can be honored. In similar fashion, the integ_avail return value indicates whether per-message

integrity services are available (through either GSS_Sign() or GSS_Seal()) on the established context.

The lifetime_req input specifies a desired upper bound for the lifetime of the context to be established,

with a value of 0 used to request a default lifetime. The lifetime_rec return value indicates the length of

time for which the context will be valid, expressed as an offset from the present; depending on mechanism

capabilities, credential lifetimes, and local policy, it may not correspond to the value requested in lifetime_

req. If no constraints on context lifetime are imposed, this may be indicated by returning a reserved

value representing INDEFINITE lifetime_req. The values of conf_avail, integ_avail, and lifetime_rec

are undefined unless the routine’s major_status indicates COMPLETE.

If the mutual_state is TRUE, this fact will be reflected within the output_token. A call to GSS_Accept_

sec_context() at the target in conjunction with such a context will return a token, to be processed by a

continuation call to GSS_Init_sec_context(), in order to achieve mutual authentication.

18 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

2.2.2 GSS_Accept_sec_context call

Inputs:

• acceptor_cred_handle OCTET STRING,—NULL specifies "use default"

• input_context_handle INTEGER, —0 specifies "not yet assigned"

• chan_bindings OCTET STRING,

• input_token OCTET STRING

Outputs:

• major_status INTEGER,

• minor_status INTEGER,

• src_name INTERNAL NAME,

• mech_type OBJECT IDENTIFIER,

• output_context_handle INTEGER,

• deleg_state BOOLEAN,

• mutual_state BOOLEAN,

• replay_det_state BOOLEAN,

• sequence_state BOOLEAN,

• conf_avail BOOLEAN,

• integ_avail BOOLEAN,

• lifetime_rec INTEGER, — in seconds, or reserved value for INDEFINITE

• delegated_cred_handle OCTET STRING,

• output_token OCTET STRING —NULL or token to pass to context initiator

This call may block pending network interactions for those mech_types in which a directory service or

other network entity must be consulted on behalf of a context acceptor in order to validate a received

input_token.

Return major_status codes:

• GSS_COMPLETE indicates that context-level data structures were successfully initialized, and that

per-message processing can now be performed in conjunction with this context.

• GSS_CONTINUE_NEEDED indicates that control information in the returned output_token must be

sent to the initiator, and that a response must be received and passed as the input_token argument to

a continuation call to GSS_Accept_sec_context(), before per-message processing can be performed

in conjunction with this context.

• GSS_DEFECTIVE_TOKEN indicates that consistency checks performed on the input_token failed,

preventing further processing from being performed based on that token.

• GSS_DEFECTIVE_CREDENTIAL indicates that consistency checks performed on the credential

structure referenced by acceptor_cred_handle failed, preventing further processing from being per-

formed using that credential structure.

• GSS_BAD_SIG indicates that the received input_token contains an incorrect signature, so context

setup cannot be accomplished.

Document Expiration: 31 May 1993 19

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

• GSS_DUPLICATE_TOKEN indicates that the signature on the received input_token was correct,

but that the input_token was recognized as a duplicate of an input_token already processed. No new

context is established.

• GSS_OLD_TOKEN indicates that the signature on the received input_token was correct, but that

the input_token is too old to be checked for duplication against previously-processed input_tokens.

No new context is established.

• GSS_NO_CRED indicates that no context was established, either because the input cred_handle was

invalid, because the referenced credentials are valid for context initiator use only, or because the

caller lacks authorization to access the referenced credentials.

• GSS_CREDENTIALS_EXPIRED indicates that the credentials provided through the input acceptor_

cred_handle argument are no longer valid, so context establishment cannot be completed.

• GSS_BAD_BINDINGS indicates that a mismatch between the caller-provided chan_bindings and

those extracted from the input_token was detected, signifying a security-relevant event and prevent-

ing context establishment.

• GSS_NO_CONTEXT indicates that no valid context was recognized for the input context_handle

provided; this major status will be returned only for successor calls following GSS_CONTINUE_

NEEDED status returns.

• GSS_FAILURE indicates that context setup could not be accomplished for reasons unspecified at

the GSS-API level, and that no interface-defined recovery action is available.

The GSS_Accept_sec_context() routine is used by a context target. Using information in the credentials

structure referenced by the input acceptor_cred_handle, it verifies the incoming input_token and (follow-

ing the successful completion of a context establishment sequence) returns the authenticated src_name

and the mech_type used. The acceptor_cred_handle must correspond to the same valid credentials struc-

ture on the initial call to GSS_Accept_sec_context() and on any successor calls resulting from GSS_

CONTINUE_NEEDED status returns; different protocol sequences modeled by the GSS_CONTINUE_

NEEDED mechanism will require access to credentials at different points in the context establishment

sequence.

The input_context_handle argument is 0, specifying "not yet assigned", on the first GSS_Accept_sec_

context() call relating to a given context. That call returns an output_context_handle for future references

to this context; when continuation attempts to GSS_Accept_sec_context() are needed to perform context

establishment, that handle value will be entered into the input_context_handle argument.

The chan_bindings argument is used by the caller to provide information binding the security context

to security-related characteristics (e.g., addresses, cryptographic keys) of the underlying communications

channel. See Section 1.1.6 of this document for more discussion of this argument’s usage.

The returned state results (deleg_state, mutual_state, replay_det_state, and sequence_state) reflect the

same context state values as returned to GSS_Init_sec_context()’s caller at the initiator system.

The conf_avail return value indicates whether the context supports per-message confidentiality services,

and so informs the caller whether or not a request for encryption through the conf_req_flag input to GSS_

Seal() can be honored. In similar fashion, the integ_avail return value indicates whether per-message

integrity services are available (through either GSS_Sign() or GSS_Seal()) on the established context.

The lifetime_rec return value indicates the length of time for which the context will be valid, expressed

as an offset from the present. The values of deleg_state, mutual_state, replay_det_state, sequence_state,

conf_avail, integ_avail, and lifetime_rec are undefined unless the accompanying major_status indicates

COMPLETE.

20 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

The delegated_cred_handle result is significant only when deleg_state is TRUE, and provides a means

for the target to reference the delegated credentials. The output_token result, when non-NULL, provides

a context-level token to be returned to the context initiator to continue a multi-step context establishment

sequence. As noted with GSS_Init_sec_context(), any returned token should be transferred to the con-

text’s peer (in this case, the context initiator), independent of the value of the accompanying returned

major_status.

Note: A target must be able to distinguish a context-level input_token, which is passed to GSS_Accept_

sec_context(), from the per-message data elements passed to GSS_Verify() or GSS_Unseal(). These data

elements may arrive in a single application message, and GSS_Accept_sec_context() must be performed

before per-message processing can be performed successfully.

2.2.3 GSS_Delete_sec_context call

Input:

• context_handle INTEGER

Outputs:

• major_status INTEGER,

• minor_status INTEGER,

• output_context_token OCTET STRING

Return major_status codes:

• GSS_COMPLETE indicates that the context was recognized, that relevant context-specific informa-

tion was flushed, and that the returned output_context_token is ready for transfer to the context’s

peer.

• GSS_NO_CONTEXT indicates that no valid context was recognized for the input context_handle

provide, so no deletion was performed.

• GSS_FAILURE indicates that the context is recognized, but that the GSS_Delete_sec_context()

operation could not be performed for reasons unspecified at the GSS-API level.

This call may block pending network interactions for mech_types in which active notification must be

made to a central server when a security context is to be deleted.

This call can be made by either peer in a security context, to flush context-specific information and to

return an output_context_token which can be passed to the context’s peer informing it that the peer’s

corresponding context information can also be flushed. (Once a context is established, the peers involved

are expected to retain cached credential and context-related information until the information’s expiration

time is reached or until a GSS_Delete_sec_context() call is made.) Attempts to perform per-message

processing on a deleted context will result in error returns.

2.2.4 GSS_Process_context_token call

Inputs:

• context_handle INTEGER,

• input_context_token OCTET STRING

Outputs:

• major_status INTEGER,

Document Expiration: 31 May 1993 21

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

• minor_status INTEGER,

Return major_status codes:

• GSS_COMPLETE indicates that the input_context_token was successfully processed in conjunction

with the context referenced by context_handle.

• GSS_DEFECTIVE_TOKEN indicates that consistency checks performed on the received context_

token failed, preventing further processing from being performed with that token.

• GSS_NO_CONTEXT indicates that no valid context was recognized for the input context_handle

provided.

• GSS_FAILURE indicates that the context is recognized, but that the GSS_Process_context_token()

operation could not be performed for reasons unspecified at the GSS-API level.

This call is used to process context_tokens received from a peer once a context has been established,

with corresponding impact on context-level state information. One use for this facility is processing

of the context_tokens generated by GSS_Delete_sec_context(); GSS_Process_context_token() will not

block pending network interactions for that purpose. Another use is to process tokens indicating remote-

peer context establishment failures after the point where the local GSS-API implementation has already

indicated GSS_COMPLETE status.

2.2.5 GSS_Context_time call

Input:

• context_handle INTEGER,

Outputs:

• major_status INTEGER,

• minor_status INTEGER,

• lifetime_rec INTEGER — in seconds, or reserved value for INDEFINITE

Return major_status codes:

• GSS_COMPLETE indicates that the referenced context is valid, and will remain valid for the amount

of time indicated in lifetime_rec.

• GSS_CONTEXT_EXPIRED indicates that data items related to the referenced context have expired.

• GSS_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated

credentials have expired.

• GSS_NO_CONTEXT indicates that no valid context was recognized for the input context_handle

provided.

• GSS_FAILURE indicates that the requested operation failed for reasons unspecified at the GSS-API

level.

This call is used to determine the amount of time for which a currently established context will remain

valid.

22 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

2.3 Per-message calls

This group of calls is used to perform per-message protection processing on an established security

context. None of these calls block pending network interactions. These calls may be invoked by a

context’s initiator or by the context’s target. The four members of this group should be considered as

two pairs; the output from GSS_Sign() is properly input to GSS_Verify(), and the output from GSS_

Seal() is properly input to GSS_Unseal().

GSS_Sign() and GSS_Verify() support data origin authentication and data integrity services. When

GSS_Sign() is invoked on an input message, it yields a per-message token containing data items which

allow underlying mechanisms to provide the specified security services. The original message, along with

the generated per-message token, is passed to the remote peer; these two data elements are processed by

GSS_Verify(), which validates the message in conjunction with the separate token.

GSS_Seal() and GSS_Unseal() support caller-requested confidentiality in addition to the data origin

authentication and data integrity services offered by GSS_Sign() and GSS_Verify(). GSS_Seal() outputs

a single data element, encapsulating optionally-enciphered user data as well as associated token data items.

The data element output from GSS_Seal() is passed to the remote peer and processed by GSS_Unseal()

at that system. GSS_Unseal() combines decipherment (as required) with validation of data items related

to authentication and integrity.

2.3.1 GSS_Sign call

Inputs:

• context_handle INTEGER,

• qop_req INTEGER,—0 specifies default QOP

• message OCTET STRING

Outputs:

• major_status INTEGER,

• minor_status INTEGER,

• per_msg_token OCTET STRING

Return major_status codes:

• GSS_COMPLETE indicates that a signature, suitable for an established security context, was suc-

cessfully applied and that the message and corresponding per_msg_token are ready for transmission.

• GSS_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the re-

quested operation cannot be performed.

• GSS_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated

credentials have expired, so that the requested operation cannot be performed.

• GSS_NO_CONTEXT indicates that no valid context was recognized for the input context_handle

provided.

• GSS_FAILURE indicates that the context is recognized, but that the requested operation could not

be performed for reasons unspecified at the GSS-API level.

Document Expiration: 31 May 1993 23

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

Using the security context referenced by context_handle, apply a signature to the input message (along

with timestamps and/or other data included in support of mech_type-specific mechanisms) and return the

result in per_msg_token. The qop_req parameter allows quality-of-protection control. The caller passes

the message and the per_msg_token to the target.

The GSS_Sign() function completes before the message and per_msg_token is sent to the peer; successful

application of GSS_Sign() does not guarantee that a corresponding GSS_Verify() has been (or can

necessarily be) performed successfully when the message arrives at the destination.

2.3.2 GSS_Verify call

Inputs:

• context_handle INTEGER,

• message OCTET STRING,

• per_msg_token OCTET STRING

Outputs:

• qop_state INTEGER,

• major_status INTEGER,

• minor_status INTEGER,

Return major_status codes:

• GSS_COMPLETE indicates that the message was successfully verified.

• GSS_DEFECTIVE_TOKEN indicates that consistency checks performed on the received per_msg_

token failed, preventing further processing from being performed with that token.

• GSS_BAD_SIG indicates that the received per_msg_token contains an incorrect signature for the

message.

• GSS_DUPLICATE_TOKEN, GSS_OLD_TOKEN, and GSS_UNSEQ_TOKEN values appear in

conjunction with the optional per-message replay detection features described in Section 1.2.3;

their semantics are described in that section.

• GSS_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the re-

quested operation cannot be performed.

• GSS_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated

credentials have expired, so that the requested operation cannot be performed.

• GSS_NO_CONTEXT indicates that no valid context was recognized for the input context_handle

provided.

• GSS_FAILURE indicates that the context is recognized, but that the GSS_Verify() operation could

not be performed for reasons unspecified at the GSS-API level.

Using the security context referenced by context_handle, verify that the input per_msg_token contains an

appropriate signature for the input message, and apply any active replay detection or sequencing features.

Return an indication of the quality-of-protection applied to the processed message in the qop_state result.

24 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

2.3.3 GSS_Seal call

Inputs:

• context_handle INTEGER,

• conf_req_flag BOOLEAN,

• qop_req INTEGER,—0 specifies default QOP

• input_message OCTET STRING

Outputs:

• major_status INTEGER,

• minor_status INTEGER,

• conf_state BOOLEAN,

• output_message OCTET STRING

Return major_status codes:

• GSS_COMPLETE indicates that the input_message was successfully processed and that the output_

message is ready for transmission.

• GSS_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the re-

quested operation cannot be performed.

• GSS_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated

credentials have expired, so that the requested operation cannot be performed.

• GSS_NO_CONTEXT indicates that no valid context was recognized for the input context_handle

provided.

• GSS_FAILURE indicates that the context is recognized, but that the GSS_Seal() operation could

not be performed for reasons unspecified at the GSS-API level.

Performs the data origin authentication and data integrity functions of GSS_Sign(). If the input conf_

req_flag is TRUE, requests that confidentiality be applied to the input_message. Confidentiality may not

be supported in all mech_types or by all implementations; the returned conf_state flag indicates whether

confidentiality was provided for the input_message. The qop_req parameter allows quality-of-protection

control.

In all cases, the GSS_Seal() call yields a single output_message data element containing (optionally

enciphered) user data as well as control information.

2.3.4 GSS_Unseal call

Inputs:

• context_handle INTEGER,

• input_message OCTET STRING

Outputs:

• conf_state BOOLEAN,

• qop_state INTEGER,

• major_status INTEGER,

Document Expiration: 31 May 1993 25

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

• minor_status INTEGER,

• output_message OCTET STRING

Return major_status codes:

• GSS_COMPLETE indicates that the input_message was successfully processed and that the resulting

output_message is available.

• GSS_DEFECTIVE_TOKEN indicates that consistency checks performed on the per_msg_token

extracted from the input_message failed, preventing further processing from being performed.

• GSS_BAD_SIG indicates that an incorrect signature was detected for the message.

• GSS_DUPLICATE_TOKEN, GSS_OLD_TOKEN, and GSS_UNSEQ_TOKEN values appear in

conjunction with the optional per-message replay detection features described in Section 1.2.3;

their semantics are described in that section.

• GSS_CONTEXT_EXPIRED indicates that context-related data items have expired, so that the re-

quested operation cannot be performed.

• GSS_CREDENTIALS_EXPIRED indicates that the context is recognized, but that its associated

credentials have expired, so that the requested operation cannot be performed.

• GSS_NO_CONTEXT indicates that no valid context was recognized for the input context_handle

provided.

• GSS_FAILURE indicates that the context is recognized, but that the GSS_Unseal() operation could

not be performed for reasons unspecified at the GSS-API level.

Processes a data element generated (and optionally enciphered) by GSS_Seal(), provided as input_

message. The returned conf_state value indicates whether confidentiality was applied to the input_

message. If conf_state is TRUE, GSS_Unseal() deciphers the input_message. Returns an indication of

the quality-of-protection applied to the processed message in the qop_state result. GSS_Seal() performs

the data integrity and data origin authentication checking functions of GSS_Verify() on the plaintext

data. Plaintext data is returned in output_message.

2.4 Support calls

This group of calls provides support functions useful to GSS-API callers, independent of the state of

established contexts. Their characterization with regard to blocking or non-blocking status in terms of

network interactions is unspecified.

2.4.1 GSS_Display_status call

Inputs:

• status_value INTEGER,—GSS-API major_status or minor_status return value

• status_type INTEGER,—1 if major_status, 2 if minor_status

• mech_type OBJECT IDENTIFIER—mech_type to be used for minor_status translation

Outputs:

• major_status INTEGER,

• minor_status INTEGER,

26 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

• status_string_set SET OF OCTET STRING

Return major_status codes:

• GSS_COMPLETE indicates that a valid printable status representation (possibly representing more

than one status event encoded within the status_value) is available in the returned status_string_set.

• GSS_BAD_MECH indicates that translation in accordance with an unsupported mech_type was

requested, so translation could not be performed.

• GSS_BAD_STATUS indicates that the input status_value was invalid, or that the input status_type

carried a value other than 1 or 2, so translation could not be performed.

• GSS_FAILURE indicates that the requested operation could not be performed for reasons unspecified

at the GSS-API level.

Provides a means for callers to translate GSS-API-returned major and minor status codes into printable

string representations.

2.4.2 GSS_Indicate_mechs call

Input:

• (none)

Outputs:

• major_status INTEGER,

• minor_status INTEGER,

• mech_set SET OF OBJECT IDENTIFIER

Return major_status codes:

• GSS_COMPLETE indicates that a set of available mechanisms has been returned in mech_set.

• GSS_FAILURE indicates that the requested operation could not be performed for reasons unspecified

at the GSS-API level.

Allows callers to determine the set of mechanism types available on the local system. This call is

intended for support of specialized callers who need to request non-default mech_type sets from GSS_

Acquire_cred(), and should not be needed by other callers.

2.4.3 GSS_Compare_name call

Inputs:

• name1 INTERNAL NAME,

• name2 INTERNAL NAME

Outputs:

• major_status INTEGER,

• minor_status INTEGER,

• name_equal BOOLEAN

Document Expiration: 31 May 1993 27

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

Return major_status codes:

• GSS_COMPLETE indicates that name1 and name2 were comparable, and that the name_equal result

indicates whether name1 and name2 were equal or unequal.

• GSS_BAD_NAMETYPE indicates that one or both of name1 and name2 contained internal type

specifiers uninterpretable by the supporting GSS-API implementation, or that the two names’ types

are different and incomparable, so the equality comparison could not be completed.

• GSS_BAD_NAME indicates that one or both of the input names was ill-formed in terms of its

internal type specifier, so the equality comparison could not be completed.

• GSS_FAILURE indicates that the requested operation could not be performed for reasons unspecified

at the GSS-API level.

Allows callers to compare two internal name representations for equality.

2.4.4 GSS_Display_name call

Inputs:

• name INTERNAL NAME

Outputs:

• major_status INTEGER,

• minor_status INTEGER,

• name_string OCTET STRING,

• name_type OBJECT IDENTIFIER

Return major_status codes:

• GSS_COMPLETE indicates that a valid printable name representation is available in the returned

name_string.

• GSS_BAD_NAMETYPE indicates that the provided name was of a type uninterpretable by the

supporting GSS-API implementation, so no printable representation could be generated.

• GSS_BAD_NAME indicates that the contents of the provided name were inconsistent with the

internally-indicated name type, so no printable representation could be generated.

• GSS_FAILURE indicates that the requested operation could not be performed for reasons unspecified

at the GSS-API level.

Allows callers to translate an internal name representation into a printable form with associated namespace

type descriptor. The syntax of the printable form is a local matter.

2.4.5 GSS_Import_name call

Inputs:

• input_name_string OCTET STRING,

• input_name_type OBJECT IDENTIFIER

Outputs:

• major_status INTEGER,

• minor_status INTEGER,

28 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

• output_name INTERNAL NAME

Return major_status codes:

• GSS_COMPLETE indicates that a valid name representation is output in output_name and described

by the type value in output_name_type.

• GSS_BAD_NAMETYPE indicates that the input_name_type is unsupported by the GSS-API im-

plementation, so the import operation could not be completed.

• GSS_BAD_NAME indicates that the provided input_name_string is ill-formed in terms of the input_

name_type, so the import operation could not be completed.

• GSS_FAILURE indicates that the requested operation could not be performed for reasons unspecified

at the GSS-API level.

Allows callers to provide a printable name representation, designate the type of namespace in conjunction

with which it should be parsed, and convert that printable representation to an internal form suitable for

input to other GSS-API routines. The syntax of the input_name is a local matter.

2.4.6 GSS_Release_name call

Inputs:

• name INTERNAL NAME

Outputs:

• major_status INTEGER,

• minor_status INTEGER

Return major_status codes:

• GSS_COMPLETE indicates that the storage associated with the input name was successfully re-

leased.

• GSS_BAD_NAME indicates that the input name argument did not contain a valid name.

• GSS_FAILURE indicates that the requested operation could not be performed for reasons unspecified

at the GSS-API level.

Allows callers to release the storage associated with an internal name representation.

2.4.7 GSS_Release_buffer call

Inputs:

• buffer OCTET STRING

Outputs:

• major_status INTEGER,

• minor_status INTEGER

Return major_status codes:

• GSS_COMPLETE indicates that the storage associated with the input buffer was successfully re-

leased.

Document Expiration: 31 May 1993 29

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

• GSS_FAILURE indicates that the requested operation could not be performed for reasons unspecified

at the GSS-API level.

Allows callers to release the storage associated with an OCTET STRING buffer allocated by another

GSS-API call.

2.4.8 GSS_Release_oid_set call

Inputs:

• buffer SET OF OBJECT IDENTIFIER

Outputs:

• major_status INTEGER,

• minor_status INTEGER

Return major_status codes:

• GSS_COMPLETE indicates that the storage associated with the input object identifier set was

successfully released.

• GSS_FAILURE indicates that the requested operation could not be performed for reasons unspecified

at the GSS-API level.

Allows callers to release the storage associated with an object identifier set object allocated by another

GSS-API call.

3 Mechanism-Specific Example Scenarios

This section provides illustrative overviews of the use of various candidate mechanism types to support

the GSS-API. These discussions are intended primarily for readers familiar with specific security tech-

nologies, demonstrating how GSS-API functions can be used and implemented by candidate underlying

mechanisms. They should not be regarded as constrictive to implementations or as defining the only

means through which GSS-API functions can be realized with a particular underlying technology, and

do not demonstrate all GSS-API features with each technology.

3.1 Kerberos V5, single-TGT

OS-specific login functions yield a TGT to the local realm Kerberos server; TGT is placed in a credentials

structure for the client. Client calls GSS_Acquire_cred() to acquire a cred_handle in order to reference

the credentials for use in establishing security contexts.

Client calls GSS_Init_sec_context(). If the requested service is located in a different realm, GSS_Init_

sec_context() gets the necessary TGT/key pairs needed to traverse the path from local to target realm;

these data are placed in the owner’s TGT cache. After any needed remote realm resolution, GSS_Init_

sec_context() yields a service ticket to the requested service with a corresponding session key; these

data are stored in conjunction with the context. GSS-API code sends KRB_TGS_REQ request(s) and

receives KRB_TGS_REP response(s) (in the successful case) or KRB_ERROR.

Assuming success, GSS_Init_sec_context() builds a Kerberos-formatted KRB_AP_REQ message, and

returns it in output_token. The client sends the output_token to the service.

30 Document Expiration: 31 May 1993

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

The service passes the received token as the input_token argument to GSS_Accept_sec_context(), which

verifies the authenticator, provides the service with the client’s authenticated name, and returns an output_

context_handle.

Both parties now hold the session key associated with the service ticket, and can use this key in subsequent

GSS_Sign(), GSS_Verify(), GSS_Seal(), and GSS_Unseal() operations.

3.2 Kerberos V5, double-TGT

TGT acquisition as above.

Note: To avoid unnecessary frequent invocations of error paths when implementing the GSS-API atop

Kerberos V5, it seems appropriate to represent "single-TGT K-V5" and "double-TGT K-V5" with separate

mech_types, and this discussion makes that assumption.

Based on the (specified or defaulted) mech_type, GSS_Init_sec_context() determines that the double-TGT

protocol should be employed for the specified target. GSS_Init_sec_context() returns GSS_CONTINUE_

NEEDED major_status9, and its returned output_token contains a request to the service for the service’s

TGT. (If a service TGT with suitably long remaining lifetime already exists in a cache, it may be usable,

obviating the need for this step.) The client passes the output_token to the service.

The service passes the received token as the input_token argument to GSS_Accept_sec_context(), which

recognizes it as a request for TGT. (Note that current Kerberos V5 defines no intra-protocol mechanism to

represent such a request.) GSS_Accept_sec_context() returns GSS_CONTINUE_NEEDED major_status

and provides the service’s TGT in its output_token. The service sends the output_token to the client.

The client passes the received token as the input_token argument to a continuation of GSS_Init_sec_

context(). GSS_Init_sec_context() caches the received service TGT and uses it as part of a service

ticket request to the Kerberos authentication server, storing the returned service ticket and session key

in conjunction with the context. GSS_Init_sec_context() builds a Kerberos-formatted authenticator, and

returns it in output_token along with GSS_COMPLETE return major_status. The client sends the output_

token to the service.

Service passes the received token as the input_token argument to a continuation call to GSS_Accept_sec_

context(). GSS_Accept_sec_context() verifies the authenticator, provides the service with the client’s

authenticated name, and returns major_status GSS_COMPLETE.

GSS_Sign(), GSS_Verify(), GSS_Seal(), and GSS_Unseal() as above.

3.3 X.509 Authentication Framework

This example illustrates use of the GSS-API in conjunction with public-key mechanisms, consistent with

the X.509 Directory Authentication Framework.

The GSS_Acquire_cred() call establishes a credentials structure, making the client’s private key accessible

for use on behalf of the client.

The client calls GSS_Init_sec_context(), which interrogates the Directory to acquire (and validate) a

chain of public-key certificates, thereby collecting the public key of the service. The certificate validation

operation determines that suitable signatures were applied by trusted authorities and that those certificates

have not expired. GSS_Init_sec_context() generates a secret key for use in per-message protection

operations on the context, and enciphers that secret key under the service’s public key.

9 This scenario illustrates a different use for the GSS_CONTINUE_NEEDED status return facility than for support of mutual authentication;
note that both uses can coexist as successive operations within a single context establishment operation.

Document Expiration: 31 May 1993 31

Generic Security Service API: Internet-Draft: November 1992

Common Authentication Technology WG: John Linn (DEC)

The enciphered secret key, along with an authenticator quantity signed with the client’s private key, is

included in the output_token from GSS_Init_sec_context(). The output_token also carries a certification

path, consisting of a certificate chain leading from the service to the client; a variant approach would

defer this path resolution to be performed by the service instead of being asserted by the client. The

client application sends the output_token to the service.

The service passes the received token as the input_token argument to GSS_Accept_sec_context(). GSS_

Accept_sec_context() validates the certification path, and as a result determines a certified binding

between the client’s distinguished name and the client’s public key. Given that public key, GSS_Accept_

sec_context() can process the input_token’s authenticator quantity and verify that the client’s private key

was used to sign the input_token. At this point, the client is authenticated to the service. The service uses

its private key to decipher the enciphered secret key provided to it for per-message protection operations

on the context.

The client calls GSS_Sign() or GSS_Seal() on a data message, which causes per-message authentication,

integrity, and (optional) confidentiality facilities to be applied to that message. The service uses the

context’s shared secret key to perform corresponding GSS_Verify() and GSS_Unseal() calls.

4 Related Activities

In order to implement the GSS-API atop existing, emerging, and future security mechanisms:

• object identifiers must be assigned to candidate GSS-API mechanisms and the name types which

they support

• concrete data element formats must be defined for candidate mechanisms (encapsulation within the

mechanism-independent token format definition in Appendix B of this document is recommended

to mechanism designers)

Calling applications must implement formatting conventions which will enable them to distinguish GSS-

API tokens from other data carried in their application protocols.

Concrete language bindings are required for the programming environments in which the GSS-API is to

be employed; such bindings for the C language are available in an associated Internet-Draft.

5 Acknowledgments

This proposal is the result of a collaborative effort. Acknowledgments are due to the many members of

the IETF Security Area Advisory Group (SAAG) and the Common Authentication Technology (CAT)

Working Group for their contributions at meetings and by electronic mail. Acknowledgments are also

due to Kannan Alagappan, Doug Barlow, Bill Brown, Cliff Kahn, Charlie Kaufman, Butler Lampson,

Richard Pitkin, Joe Tardo, and John Wray of Digital Equipment Corporation, and John Carr, John Kohl,

Jon Rochlis, Jeff Schiller, and Ted T’so of MIT and Project Athena. Joe Pato and Bill Sommerfeld of

HP/Apollo, Walt Tuvell of OSF, and Bill Griffith and Mike Merritt of AT&T, provided inputs which

helped to focus and clarify directions. Precursor work by Richard Pitkin, presented to meetings of the

Trusted Systems Interoperability Group (TSIG), helped to demonstrate the value of a generic, mechanism-

independent security service API.

32 Document Expiration: 31 May 1993

APPENDIX A

PACS AND AUTHORIZATION SERVICES

Consideration has been given to modifying the GSS-API service interface to recognize and manipulate

Privilege Attribute Certificates (PACs) as in ECMA 138, carrying authorization data as a side effect

of establishing a security context, but no such modifications have been incorporated at this time. This

appendix provides rationale for this decision and discusses compatibility alternatives between PACs and

the GSS-API which do not require that PACs be made visible to GSS-API callers.

Existing candidate mechanism types such as Kerberos and X.509 do not incorporate PAC manipulation

features, and exclusion of such mechanisms from the set of candidates equipped to fully support the GSS-

API seems inappropriate. Inclusion (and GSS-API visibility) of a feature supported by only a limited

number of mechanisms could encourage the development of ostensibly portable applications which would

in fact have only limited portability.

The status quo, in which PACs are not visible across the GSS-API interface, does not preclude im-

plementations in which PACs are carried transparently, within the tokens defined and used for certain

mech_types, and stored within peers’ credentials and context-level data structures. While invisible to

API callers, such PACs could be used by operating system or other local functions as inputs in the course

of mediating access requests made by callers. This course of action allows dynamic selection of PAC

contents, if such selection is administratively-directed rather than caller-directed.

In a distributed computing environment, authentication must span different systems; the need for such

authentication provides motivation for GSS-API definition and usage. Heterogeneous systems in a net-

work can intercommunicate, with globally authenticated names comprising the common bond between

locally defined access control policies. Access control policies to which authentication provides inputs

are often local, or specific to particular operating systems or environments. If the GSS-API made par-

ticular authorization models visible across its service interface, its scope of application would become

less general. The current GSS-API paradigm is consistent with the precedent set by Kerberos, neither

defining the interpretation of authorization-related data nor enforcing access controls based on such data.

The GSS-API is a general interface, whose callers may reside inside or outside any defined TCB or

NTCB boundaries. Given this characteristic, it appears more realistic to provide facilities which provide

"value-added" security services to its callers than to offer facilities which enforce restrictions on those

callers. Authorization decisions must often be mediated below the GSS-API level in a local manner

against (or in spite of) applications, and cannot be selectively invoked or omitted at those applications’

discretion. Given that the GSS-API’s placement prevents it from providing a comprehensive solution to

the authorization issue, the value of a partial contribution specific to particular authorization models is

debatable.

PACs and Authorization Services 33

APPENDIX B

MECHANISM-INDEPENDENT TOKEN FORMAT

This appendix specifies a mechanism-independent level of encapsulating representation for the initial

token of a GSS-API context establishment sequence, incorporating an identifier of the mechanism type

to be used on that context. Use of this format (with ASN.1-encoded data elements represented in BER,

constrained in the interests of parsing simplicity to the Distinguished Encoding Rule (DER) BER subset

defined in X.509, clause 8.7) is recommended to the designers of GSS-API implementations based on

various mechanisms, so that tokens can be interpreted unambiguously at GSS-API peers. There is no

requirement that the mechanism-specific innerContextToken, innerMsgToken, and sealedUserData data

elements be encoded in ASN.1 BER.

-- optional top-level token definitions to

-- frame different mechanisms

GSS-API DEFINITIONS ::=

BEGIN

MechType ::= OBJECT IDENTIFIER

-- data structure definitions

-- callers must be able to distinguish among

-- InitialContextToken, SubsequentContextToken,

-- PerMsgToken, and SealedMessage data elements

-- based on the usage in which they occur

InitialContextToken ::=

-- option indication (delegation, etc.) indicated within

-- mechanism-specific token

[APPLICATION 0] IMPLICIT SEQUENCE {

thisMech MechType,

innerContextToken ANY DEFINED BY thisMech

-- contents mechanism-specific

}

SubsequentContextToken ::= innerContextToken ANY

-- interpretation based on predecessor InitialContextToken

PerMsgToken ::=

-- as emitted by GSS_Sign and processed by GSS_Verify

innerMsgToken ANY

SealedMessage ::=

-- as emitted by GSS_Seal and processed by GSS_Unseal

-- includes internal, mechanism-defined indicator

-- of whether or not encrypted

sealedUserData ANY

END

Mechanism-Independent Token Format 35

